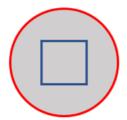
Dos inductancias son conectadas en serie y por ellas circula una corriente que varía uniformemente en el tiempo con una tasa de **2A/s.** La caída de tensión entre los bornes de las dos inductancias es de **4V.** Se sabe que una de las inductancias tiene un valor de **2H** y la inductancia mutua del conjunto es de **1.8 H.** El factor de acoplamiento **k** vale, aproximadamente:


- a. Ninguna de las otras respuestas es correcta.
- b. 0.95
- C. Faltan datos para poder calcular el factor de acoplamiento
- d. 0.67
- e. No respondo.
- f. 0.47

Pregunta 4

Finalizado

Puntúa como 1,00

La circunferencia roja es la traza de un solenoide muy largo de diámetro ${\it D}$ = 15 cm y 1562 vueltas por metro. El interior del solenoide (gris) es un material de permeabilidad relativa $\mu_r=400$. El cuadrado azul de lado ${\it a}$ = 2 cm es conductor y de resistencia ${\it R}$ = 0,314 Ω . La corriente I(t) que circula por el solenoide varía temporalmente e induce una corriente $i(t)=\frac{-2t}{(1+t^2)^2}$ mA (t en segundos) en la espira azul. Entonces el valor absoluto de la corriente ${\it I}(t)$ en ${\it A}$, es aproximadamente:

 ${\cal C}$ es una constante.

$$\odot$$
 a. $I(t)=rac{1}{1+t^2}+C$

$$\ \, \circ \, \text{ b. } \ \, I(t) = \tfrac{1}{1+t} + C$$

c. No respondo.

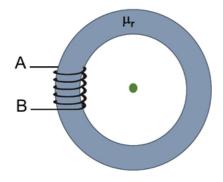
$$O d. I(t) = \frac{1}{1+t^3} + C$$

e. Ninguna de las otras respuestas es correcta.

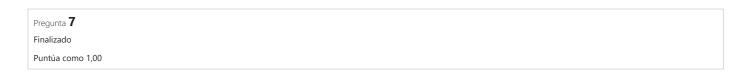
• f.
$$I(t) = \frac{1}{t^2} + C$$

Pregunta 5	
Finalizado	
Puntúa como 1,00	

En un circuito RLC serie (R = 300Ω , L = 6 H) se aplica una tensión eficaz de 110 V con una frecuencia de 60 Hz. La corriente eficaz es máxima cuando C vale, aproximadamente:


- \bigcirc a. 1,17 μF
- b. 46,30 nF
- o. 1,17 nF
- d. 46,30 μF
- e. No respondo.
- of. Ninguna de las otras respuestas es correcta.

Pregunta 6

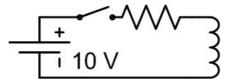

Finalizado

Puntúa como 1,00

La figura muestra un toroide de permeabilidad relativa $\mu_T = 1$, sección transversal S = 1 cm² de sección y largo medio $L_m = 20$ cm. Sobre el toroide hay arrolladas 200 vueltas de alambre. Por el centro del toroide pasa el cable verde que transporta una corriente I(t) = 2 kA/s t saliente al plano del dibujo. La fem V(A)-V(B) vale, aproximadamente:

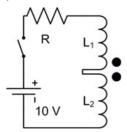
- a. Ninguna de las otras respuestas es correcta.
- O b. 251,2 mV
- o c. 251,2 μV
- d. No respondo.
- e. -251,2 mV
- f. -251,2 *\mu*V

Un circuito RL serie R = 220Ω es alimentado por un generador de de corriente alterna a 50 Hz y tiene un factor de potencia 0,707. Se agrega un capacitor en serie de manera que el factor de potencia pasa a 0,92 inductivo. El capacitor agregado vale, aproximadamente:


- \odot a. C= 35,3 μ F
- \odot b. C= 12,6 μ F
- c. No respondo.
- od. Ninguna de las otras respuestas es correcta.
- \odot e. C= 25,2 μ F
- f. $C = 20.2 \,\mu\text{F}$

Pregunta 8

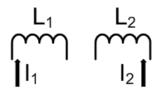
Finalizado


Puntúa como 1,00

En el circuito de la figura el valor de R=1 Ω . A t=0 se cierra la llave. Luego de mucho tiempo la energía almacenada en la inductancia es 10 J. La constante de tiempo del circuito vale, aproximadamente:

- \bigcirc a. τ =0.2 ms
- \bigcirc b. $_{ au}$ = 20 ms
- \circ c. τ = 0.2 s
- \odot d. τ = 2 ms
- o e. Ninguna de las otras respuestas es correcta.
- f. No respondo.

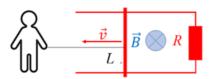
Los componentes del circuito valen $R = 10 \Omega$, $L_1 = 2 H$, $L_2 = 2 H$ y k = 0.5. En t = 0 se cierra la llave. La corriente en t = 0.2 s vale, aproximadamente:


- a. 0.316 A
- b. Ninguna de las otras respuestas es correcta.
- c. 6.32 A
- d. No respondo.
- e. 3.16 A
- f. 0.632 A

Pregunta 10

Finalizado

Puntúa como 1,00


Las inductancias L_1 y L_2 se encuentran inicialmente muy alejadas y por ellas circulan corrientes constantes $I_1 = 3$ A e $I_2 = 5$ A. Para acercar las inductancias hasta la posición de la figura se debe realizar un trabajo igual a 60 J. El coeficiente de inductancia mutua vale, aproximadamente:

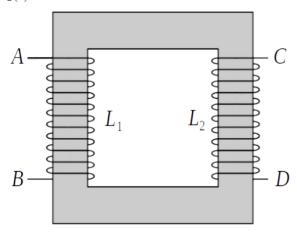
- a. M = 2 H sustractivo
- b. M = 4 H aditivo
- C. M = 4 H sustractivo
- d. M = 2 H aditivo
- e. Ninguna de las otras respuestas es correcta.
- of. No respondo.

Pregunta 11 Finalizado Puntúa como 1,00

La figura muestra el conocido sistema de rieles y barra deslizante, inmersos en un campo uniforme B=2T. La resistencia $R=40 \Omega$ representa al valor total de la resistencia de todo el circuito. La persona tira de la cuerda negra para mantener constante la velocidad de la barra móvil y la potencia mecánica desarrollada es P=10 W. El largo L de la barra móvil y su velocidad V cumplen, aproximadamente:

- a. Ninguna de las otras respuestas es correcta.
- b. No respondo.
- o. $L/v = 10 \text{ m}^2/\text{s}$
- \odot d. $L v = 10 \text{ m}^2/\text{s}$
- e. $L/v = 200 \text{ m}^2/\text{s}$
- \circ f. L v= 200 m²/s

Pregunta 12

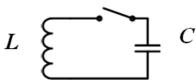

Finalizado

Puntúa como 1,00

Un capacitor de 2μ F se carga a 12 V, luego se desconecta de la fuente de energía y se conecta el capacitor a los bornes de una bobina. Se mide el periodo de oscilación del circuito T=6,28 ms. La inductancia de la bobina vale, aproximadamente:

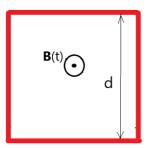
- a. Ninguna de las otras respuestas es correcta.
- ob. No respondo.
- c. 2 H
- od. 0,5 H
- e. 1 H
- f. 10 H

La figura ilustra un núcleo con dos arrollamientos. La inductancia del bobinado AB es $L_1=1.5\mathrm{H}$ la del CD $L_2=6\mathrm{H}$ y el coeficiente de acoplamiento k=0.5. Por el bobinado AB circula una corriente I(t) que induce en bornes del bobinado abierto CD un voltaje de módulo $V_2(t)=30~\mathrm{e}^{(-t/3\mathrm{s})}~\mathrm{V}$. En módulo la corriente I(t) vale, aproximadamente:

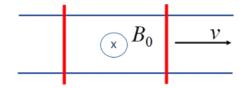

- a. No respondo.
- b. Ninguna de las otras respuestas es correcta.
- \circ c. $I(t) = 120 e^{(-t/3s)} A$
- \circ d. $I(t) = 90 e^{(-t/3s)} A$
- \circ e. $I(t) = 30 e^{(-t/3s)} A$
- f. $I(t) = 60 e^{(-t/3s)} A$

Pregunta 14

Finalizado


Puntúa como 1,00

El capacitor C= 4 μ F tiene una carga inicial de 50 μ C. Al cerrarse la llave se descarga sobre la inductancia L= 100 μ H. La corriente máxima $I_{m\acute{a}x}$ que circula por la inductancia vale, aproximadamente:


- a. No respondo.
- b. 5 mA
- c. 2,5 mA
- d. 5 A
- e. Ninguna de las otras respuestas es correcta.
- of. 2,5 A

La espira cuadrada de la figura está inmersa en un campo $\vec{B}=(-1+0.2\frac{1}{s}t)(\hat{z})\,$ T. En t=0 el lado "d" del cuadrado mide 1,2 m y varía de forma tal que la fem inducida es nula (considere que la espira siempre es cuadrada). En t=0 el lado "d" del cuadrado varía en el tiempo, aproximadamente como:

- $^{\odot}$ a. $\frac{dd}{dt}=6~\frac{\mathrm{cm}}{\mathrm{s}}$
- \odot b. $\frac{dd}{dt}=-6~\frac{\mathrm{cm}}{\mathrm{s}}$
- \odot c. $rac{dd}{dt}=12 rac{
 m cm}{
 m s}$
- d. No respondo.
- o e. Ninguna de las otras respuestas es correcta.
- \odot f. $\frac{dd}{dt} = -12 \; \frac{\rm cm}{\rm s}$

Hay dos barras metálicas idénticas (rojas) de largo \boldsymbol{L} y resistencia \boldsymbol{R} . La barra derecha desliza sobre un par de rieles conductores muy largos y de resistencia despreciable (azules) y se desplaza con velocidad \boldsymbol{v} (módulo constante, y sentido indicado). Todo el conjunto se encuentra inmerso en un campo magnético uniforme de módulo $\boldsymbol{B_0}$. La corriente inducida \boldsymbol{i} vale:

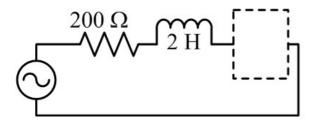
$$^{\bigcirc}$$
 a. $i=rac{2B_0Lv}{R}$, horario

$$^{\bigcirc}$$
 b. $i=rac{B_0Lv}{2R}$, antihorario

oc. Ninguna de las otras respuestas es correcta.

$$^{\odot}$$
 d. $i=rac{B_0Lv}{2R}$, horario

$$^{\odot}$$
 e. $i=rac{2B_0Lv}{R}$, antihorario


f. No respondo.

Pregunta 17

Finalizado

Puntúa como 1,00

El circuito de la figura es alimentado por un generador VG= 50 V, y frecuencia f= 20Hz. La tensión en la resistencia está atrasada 60° respecto de la del generador . En la caja punteada hay un solo elemento (un capacitor C ó un inductor L sin acoplamiento) conectado en serie, que vale aproximadamente:

- a. L=0,75 H
- b. C= 2,75 nF
- c. C= 1,75 nF
- od. Ninguna de las otras respuestas es correcta.
- e. L= 2,75 H
- f. No respondo.

Pregunta 18

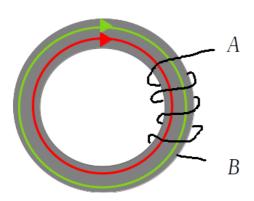
Finalizado

Puntúa como 1,00

Un alambre se arrolla alrededor de un núcleo toroidal de permeabilidad relativa μ_r , sección transversal S y largo medio Pm. Las N₁ vueltas de alambre cubren totalmente la periferia del núcleo y no hay espacio libre entre vueltas, con lo que se obtiene una inductancia L₁. Se usa el mismo alambre y forma de bobinar sobre otro núcleo de igual permeabilidad relativa, igual sección transversal S y con longitud media Pm/2 y N₂ vueltas, con lo que se obtiene una inductancia L₂. La relación entre L₁ y L₂ vale, aproximadamente:

- \bigcirc a. L₁=4L₂
- O b. $L_1 = 2L_2$
- \bigcirc c. $4L_1=L_2$
- d. No respondo.
- e. Ninguna de las otras respuestas es correcta.
- f. $2L_1=L_2$

El circuito de la figura resuena a f_0 = 50 Hz. Si a 65 Hz la corriente atrasa con respecto al voltaje del generador 45 grados. La inductancia y el capacitor valen, aproximadamente:


- a. Ninguna de las otras respuestas es correcta.
- \odot b. L = 2,4 H, C = 4,2 μ F
- \circ c. L = 1,2 H, C = 8,4 μ F
- \odot d. L = 3,9 H, C = 2,6 μ F
- e. No respondo.
- \odot f. L= 3,4 H, C = 3 μ F

Pregunta **20**

Finalizado

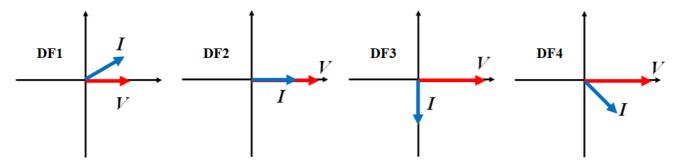
Puntúa como 1,00

El circuito magnético mostrado (gris) está constituido por un núcleo toroidal de radio externo 3 cm y radio interno 2.9 cm y N vueltas de alambre. Por el mismo circula una corriente I de 2.5 A lo que determina un vector \vec{B} de módulo 779.6 mT (en rojo) y un vector \vec{H} de módulo 3.102 kA/m (en verde). La permeabilidad magnética relativa μ_r y el número de vueltas del bobinado valen, aproximadamente:

- \odot a. μ_r = 200, N= 460
- \odot b. μ_r = 400, N= 460
- oc. No respondo.
- \bigcirc d. μ_r = 200, N= 230
- \odot e. μ_r = 400, N= 230
- of. Ninguna de las otras respuestas es correcta.

Pregunta 21	
Finalizado	
Puntúa como 1,00	

Un capacitor C= 30 μ F se descarga sobre una resistencia R a partir del momento t=0. En t= 15 ms la corriente que circula por la resistencia es el 46,56% de la máxima. La resistencia vale, aproximadamente:


- a. No respondo.
- \odot b. R=654 Ω
- c. R=65,4 kΩ
- od. Ninguna de las otras respuestas es correcta
- \bigcirc e. R=65,4 Ω

Pregunta 22

Finalizado

Puntúa como 1,00

Un circuito, alimentado por la red domiciliaria de nuestro país está formado por una resistencia R=50 Ω , una inductancia L= 800 mH y un capacitor C=30 μ F. ¿Cuál de estos diagramas fasoriales (fuera de escala) corresponde al circuito?

- a. Ninguna de las otras respuestas es correcta.
- b. DF4
- c. No respondo.
- Od. DF3
- e. DF1
- f. DF2
- → Declaración Jurada Ética (necesario aceptar antes de rendir)(30-07)

Ir a...